Hypothalamus-brain stem circuitry responsible for vagal efferent signaling to the pancreas evoked by hypoglycemia in rat.
نویسندگان
چکیده
Circulating glucose levels significantly affect vagal neural activity, which is important in the regulation of pancreatic functions. Little is known about the mechanisms involved. This study investigates the neural pathways responsible for hypoglycemia-induced vagal efferent signaling to the pancreas and identifies the neurotransmitters involved. Vagal pancreatic efferent nerve activities were recorded in anesthetized rats. Insulin-induced hypoglycemia, a decrease of blood glucose levels from 114 +/- 5 to 74 +/- 6 mg dl(-1), stimulated an increase in pancreatic efferent nerve firing from a basal rate of 1.1 +/- 0.3 to 19 +/- 3 impulses 30 s(-1). In contrast, vagal primary afferent neuronal discharges recorded in the nodose ganglia were unaltered by systemic hypoglycemia. Vagal afferent rootlet section plus splanchnicotomy had no effect on hypoglycemia-induced vagal efferent firing, suggesting a central site of action. Decerebration reduced the increase in nerve firing stimulated by hypoglycemia from 21 +/- 4 to 9.6 +/- 2 impulses 30 s(-1). Chemical ablation of the lateral hypothalamic area, but not the arcuate nucleus, inhibited pancreatic nerve firing evoked by hypoglycemia. Microinjection of the orexin-A receptor antagonist SB-334867 into the dorsal motor nucleus of the vagus (DMV) inhibited pancreatic nerve firing evoked by insulin-induced hypoglycemia by 56%. In contrast, injection of orexin-A (20 pmol) into the DMV elicited a 30-fold increase in pancreatic nerve firing. We concluded that systemic hypoglycemia stimulates pancreatic efferent nerve firing through a central mechanism. Full expression of pancreatic nerve activities during hypoglycemia requires both the forebrain and the brain stem. In addition to activating neurons in the brain stem, central neuroglucopenia activates subpopulations of neurons in the lateral hypothalamic area that contain orexin. The released orexin acts on DMV neurons to stimulate pancreatic efferent nerve activities and thus regulate pancreatic functions.
منابع مشابه
P 129: The Role of Overexpression Transcription Factor BRN 4 in Multiple Sclerosis
Adult neurogenesis is a process of producing nerve cells from their progenitor that occurs in some areas in the brain such as the hypothalamus. Low activity in this area plays a role in neural degeneration and diseases such as multiple sclerosis, epilepsy and depression. MS is a neurodegenerative disease with a permanent disability that the main reason for it is axonal degeneration and neuronal...
متن کاملGhrelin acts on the dorsal vagal complex to stimulate pancreatic protein secretion.
Ghrelin receptors are present in the central nervous system. We hypothesized that ghrelin released from the stomach acts as an endocrine substance and stimulates brain stem vagovagal circuitry to evoke pancreatic secretion. In an in vivo anesthetized rat model, an intravenous infusion of ghrelin at doses of 5, 10, and 25 nmol increased pancreatic protein secretion from a basal level of 125 +/- ...
متن کاملSympathovagal Imbalance in Type 2 Diabetes — Role of Brainstem Thyrotropin-Releasing Hormone
Increasing evidence suggests that the brain plays a key role in regulating metabolism [1, 2]. In particular, the exquisitely precise adjustments in the sympathetic and parasympathetic outflow by the brain are critical for maintaining metabolic homeostasis. Enhanced sympathetic drive and impaired vagal efferent function contribute to multisystemic pathophysiology of T2D, including reduced insuli...
متن کاملHypothalamic regulation of pancreatic secretion is mediated by central cholinergic pathways in the rat.
The vago-vagal reflex plays an important role in mediating pancreatic secretion evoked by cholecystokinin and non-cholecystokinin-dependent luminal factors. We hypothesize that the vago-vagal reflex mediating pancreatic secretion in the rat is under central control and regulated by cholinergic pathways in the hypothalamus. To test this hypothesis, we demonstrated that chronic decerebration decr...
متن کاملHypothalamus Pituitary Adrenal axis and stimulatory G proteins signaling role in nociceptive changes induced by forced swim stress
Introduction: Different mechanisms are involved in stress induced analgesia (SIA) and hyperalgesia (SIH). Repeated stress induces development of tolerance to SIA. The role of HPA axis and Gs signaling pathway in these effects are investigated in the current study. Methods: Forced swim stress (5 min/day) in water (20±1 ºC) was employed to adult male Wistar rats (200-250 g). The nociceptive t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 91 4 شماره
صفحات -
تاریخ انتشار 2004